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Abstract— Organic electronics can be leveraged to create
conformable, biocompatible, high density sensing arrays that
generate high spatiotemporal resolution neurophysiologic data
from novel experimental paradigms. A main priority for analysis
of this data is detection of oscillations, due to their association with
information processing and effective use as targets for network-
based closed-loop therapeutics. However, current frequency-
based approaches are hindered by the non-stationary, irregular
waveforms that comprise neural oscillations, and require bulky,
rigid, high power consuming hardware for implementation. Here,
we developed a low latency, time domain-based method that
detects and characterizes oscillations without the need for a priori
knowledge of signal characteristics. We tested this approach using
data generated by arrays of organic electronic electrodes
implanted in developing mice harboring a gene mutation that
results in developmental disability and were able to identify key
signal motifs. This work opens avenues for advanced, closed-loop
analytics applicable to neurologic disorders.
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I. INTRODUCTION

Diagnosis and monitoring of treatment response for a variety
of neurologic disorders requires interpretation of brain-derived
neurophysiologic data. This data is comprised of a complex
mixture of periodic and aperiodic components. The periodic
components take the form of transient oscillations, which reflect
ongoing information processing and are dysregulated in many
neurologic disorders[1]. Currently, interpretation relies heavily
on expert visual identification of oscillations based on various
signal features in the raw time series (voltage/time) data[2].
High heterogeneity of signals between patients and across
disease states, the co-existence of oscillations with broad-band
transients, and lack of ideal sinusoidal kernel have limited the
efficacy of frequency-based computational approaches for
clinical purposes[3]. Implementation of any automated
detection of these oscillations also requires a priori knowledge
of key features which are often unknown in disease states, and
necessitates bulky hardware that poses challenges for
incorporation into implantable closed-loop devices[4]. Yet, as
the sensitivity and density of neural interface devices increase,
visual pattern identification by human experts becomes
impractical. Organic electronic neural interface devices have
been shown permit simultaneous acquisition of hundreds of
channels at 20 kHz sampling rate from a variety of experimental
paradigms, ranging from human cortex to mouse models of
pediatric epilepsy[5], [6]. This study presents a time domain-
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based oscillatory feature extraction algorithm that can be
effectively applied to such varied, high spatiotemporal
resolution datasets and implemented with low latency and
minimal hardware requirements. We use this algorithm on a
novel dataset recorded from immature mice expressing a
KCNQ3 mutation that results in developmental disability[7] and
demonstrate its capacity to provide an unbiased readout of
oscillatory features.

II. DEVICES AND NEURAL DATA

A. Organic electronics generate high spatiotemporal
resolution neurophysiologic data

Organic electronics possess properties that are beneficial for
design of neural interface devices, including conformability,
efficient abiotic/biotic interface, biocompatibility, and capacity
to form scalable, miniaturizable, high density electrode
arrays[8]. Devices with conducting polymer-based electrodes
can be nanofabricated into form factors amenable to surface or
depth recording from the brain. Furthermore, they can be
customized to acquire neurophysiologic signals from
preparations typically inaccessible to this monitoring, such as
the fragile tissue of the developing brain in vivo (Figure 1A).
These devices support sampling of signals at 20 kHz across
hundreds of individual channels, generating high
spatiotemporal resolution datasets (Figure 1B, upper). Signals
are highly non-stationary, with complex waveforms and
spectral features, as exemplified in the data acquired from a
mouse pup 13 days after birth (PND 13; Figure 1B, lower).

III. TIME DOMAIN METHOD

A. Time domain-based oscillatory feature extraction

To extract information regarding the presence of
oscillations in such data in the time domain, the raw LFP is first
z-scored to normalize the amplitude values. A peak detection
algorithm was then applied, wherein local maxima were simply
identified as data samples with values larger than neighboring
data samples. Minimum peak height was specified using a
threshold based on a fraction of the wideband noise floor, which
was customized based on signal to noise ratio of the data.
Minimum peak width was determined by sampling rate of the
data and practically guided by physiologic limits of oscillations
within in vivo neural networks (maximum of several hundred
Hz; Figure 2A). Detected peaks were characterized by their
width at half maximum and peak height (Figure 2B). From
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these data, oscillatory period for each peak was calculated,
allowing for visualization of the distribution of individual
periods across the data (Figure 2C). Next, peaks were grouped
into putative discrete oscillations based on the similarity of their
oscillatory period after discarding any peaks within the
oscillatory period (i.e. a nested oscillation). Neighboring peaks
with oscillatory periods that differed by less than 5% were
considered members of an oscillation, with a gap of greater than
the oscillatory period signifying the end of this oscillation.
These putative oscillations could then be characterized by an
array of features, such as mean amplitude, duration, number of
oscillatory cycles and root mean square power. Our time
domain-based approach was compared with a conventional
wavelet transform (a frequency-based approach), using sample
data with known characteristics to allow evaluation of results
relative to a gold standard. Sample data was extracted from
hippocampal recordings during rapid eye movement (REM)
sleep, an epoch characterized by prominent theta oscillations (5-
8 Hz) with nested gamma oscillations (30-100 Hz; Figure 3A).
The distribution of oscillatory periods detected by the time
domain approach was bimodal, consistent with detection of both
types of oscillations (Figure 3B, left). In contrast, the wavelet
transform detected only the theta peak (Figure 3B, right). Thus,
the time domain approach is more sensitive to the higher
frequency oscillations without requiring multiple data pre-
processing steps.

B. Time domain-based analysis of novel neurophysiologic
dataset

Mouse models of pediatric neurologic disease are critical to
understand how dysregulation of neural networks emerges. The

R231H mutation in Kcng3 is orthologous to the human
mutation which is associated with developmental

disability and epileptiform discharges in children. We
implanted wild-type and mutant mouse pups with conducting
polymer-based electrode arrays to acquire high spatiotemporal
resolution data from cortex. Raw LFP traces revealed stark
differences in oscillatory features between wildtype and mutant
mice, but without a priori knowledge of how oscillations are
dysregulated by the KCNQ3 mutation, characterization was
challenging (Figure 4A). To quantitatively compare these
datasets, the time domain-based oscillatory detection approach
was employed, followed by characterization of oscillatory
features. Using principal components analysis for
dimensionality reduction, data derived from wildtype and
mutant mice was demonstrated to be separable (Figure 4B),
enabling further analysis of physiologic and pathologic
oscillations.

IV. DISCUSSION

Implementation of this time domain-based, unbiased oscillatory
extraction algorithm paves the way for systematic analysis of
novel datasets generated by high spatiotemporal resolution
neural interface devices. The peak-by-peak approach employed
allows accurate identification of true oscillations, as defined by
rhythmic activity with a narrow, consistent oscillatory period.
These oscillations are most likely to have defined roles within

physiologic networks and characteristic dysfunction in disease
states, making them key targets for detection and
implementation of closed-loop therapeutics[9], [10], [11]. This
methodology is also robust to the perpetually evolving bursts of
oscillatory cycles characteristic of neural activity, and their
irregular (non-sinusoidal) waveforms that typically present
challenges for frequency-based approaches. Such features are
exemplified in neurophysiologic signals of the developing
brain, and the time domain-based algorithm efficiently parsed
oscillatory motifs from this data. Furthermore, it can be
implemented with simple arithmetic, resulting in capacity for
low-latency processing with minimal hardware requirements.
Thus, implementation could potentially be accomplished using
conformable, organic electronic transistors, setting the stage for
fully implantable, conformable, and biocompatible neural
processing devices[12], [13], [14].

ACKNOWLEDGMENT

This work was supported by University of California Irvine
and Columbia University Irving Medical Center. The device
fabrication was performed at Columbia Nano-Initiative.

REFERENCES

[1] T. Donoghue et al., “Parameterizing neural power spectra into periodic
and aperiodic components,” Nat Neurosci, vol. 23,no. 12, pp. 1655-1665.

[2] M. A.Kural et al., “Criteria for defining interictal epileptiform discharges
in EEG: A clinical validation study,” Neurology, vol. 94, no. 20, pp.
E2139-E2147, May 2020.

[3] C.S. Herrmann, S. Rach, J. Vosskuhl, and D. Striiber, “Time-frequency
analysis of event-related potentials: a brief tutorial,” Brain Topogr, vol.
27, no. 4, pp. 438450, 2014

[4] K. W. Scangos et al., “Closed-loop neuromodulation in an individual with
treatment-resistant depression,” Nat Med, vol. 27, no. 10, 2021.

[51 A.R. Hassan et al., “Translational Organic Neural Interface Devices at
Single Neuron Resolution,” Adv Sci (Weinh), vol. 9, no. 27, Sep. 2022,.

[6] A. N. Shore et al., “Reduced GABAergic Neuron Excitability, Altered
Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function
Mouse Model of Childhood Epilepsy,” Cell Rep, vol. 33, no. 4, Oct. 2020.

[71 T. T. Sands et al., “Autism and Developmental Disability Caused by
KCNQ3 Gain-of-Function Variants,” 2019.

[8] D. Khodagholy et al., “NeuroGrid: recording action potentials from the
surface of the brain,” Nat Neurosci, vol. 18, no. 2, pp. 310-315, Feb.
2015.

[91 D. Khodagholy, J. N. Gelinas, and G. Buzsaki, “Learning-enhanced
coupling between ripple oscillations in association cortices and
hippocampus,” Science, vol. 358, no. 6361, pp. 369-372, Oct. 2017.

[10] Z. Zhao, C. Cea, J. N. Gelinas, and D. Khodagholy, “Responsive
manipulation of neural circuit pathology by fully implantable, front-end
multiplexed embedded neuroelectronics,” Proc Natl Acad Sci U S A, vol.
118, no. 20, 2021.

[11] J. N. Gelinas, D. Khodagholy, T. Thesen, O. Devinsky, and G. Buzsaki,
“Interictal epileptiform discharges induce hippocampal-cortical coupling
in temporal lobe epilepsy,” Nat Med, vol. 22, no. 6, pp. 641-648, Jun.
2016.

[12] Z. Zhao, G. D. Spyropoulos, C. Cea, J. N. Gelinas, and D. Khodagholy,
“lonic communication for implantable bioelectronics,” Sci Adv, vol. 8, no.
14, p. 7851, Apr. 2022.

[13] C. Cea, G. D. Spyropoulos, P. Jastrzebska-Perfect, J. J. Ferrero, J. N.
Gelinas, and D. Khodagholy, “Enhancement-mode ion-based transistor as
a comprehensive interface and real-time processing unit for in vivo
electrophysiology,” Nat Mater, vol. 19, no. 6, pp. 679686, Jun. 2020.

[14] P. Jastrzebska-Perfect et al., “Mixed-conducting particulate composites
for soft electronics,” Sci Adv, vol. 6, no. 17, 2020.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on April 30,2025 at 01:20:51 UTC from IEEE Xplore. Restrictions apply.



Skull

CP-based

electrodes

. . : : /—)
. ) . 10

Fig. 1: Conformable organic electronics acquire high spatiotemporal resolution neurophysiologic data. A)
Photomicrography of linear array of conducting polymer-based electrodes in a conformable parylene C substrate prior to
insertion into the brain of a mouse pup (left; scale bar 100 pm) and zoomed in view demonstrating device architecture
(right; scale bar 50 um). B) Sample raw local field potential traces obtained from 5 conducting polymer-based electrodes
implanted in a PND 13 mouse pup (upper; scale bar 1 s, 500 V) and two sample spectrograms derived from raw data using
a wavelet transform (lower; scale bar 200 ms).
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Fig 2: Time domain-based approach to oscillatory detection. A) Peaks are identified by local maxima (red arrow), followed
by extraction of peak height (h; blue arrow) and peak width at half maximum height (T; red arrow). Minimum peak height
is determined based on noise (#) floor derived from the signal (x) standard deviation. Minimum peak width is determined
based on sampling rate and physiological bandwidth (fiow - fhigr). B) Sample raw LFP trace with oscillatory peak detection
(scale bar 100 ms). C) Histogram of detected peak widths in a sample dataset.
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Fig 3. Time-domain oscillatory detection of nested high frequencies. A) Sample traces of a REM epoch with highlighted
theta oscillation (blue) and nested gamma oscillations (yellow) with their corresponding peak dectetion. B) Histogram
of frequency content of the REM epoch derived using time-domain detection (orange) showing bimodality with
prominent theta and gamma oscillatory activity without the need for additional pre-processing. Black trace shows the
analytic wavelet transform of the same trace with a notable theta peak but absent gamma peak.
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Fig. 4: Oscillatory activity patterns in wildtype and mutant immature mice. A) Sample raw LFP traces from KCNQ?3
mutant (MUT) mice (red) and wildtype (WT) mice (black) at PND 13. B) Principal component analysis of oscillatory
features extracted from time domain approach effectively differentiates signals acquired from wildtype and mutant mice.
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