Neurolmage: Clinical 6 (2014) 296-306

Contents lists available at ScienceDirect

Neurolmage: Clinical

Neurolmage:

CLINICAL

journal homepage: www.elsevier.com/locate/ynicl

Cerebellar language mapping and cerebral language dominance in
pediatric epilepsy surgery patients

@ CrossMark

Jennifer N. Gelinas MD, PhD? Kevin P.V. Fitzpatrick MSc®, Hong Cheol Kim BASc®, Bruce H. Bjornson MD"<

2Neurosciences and Physiology, New York University Langone Medical Center, 450 East 29th St, New York, NY 10016, USA
bDivision of Neurology, Department of Pediatrics, University of British Columbia, 4480 Oak Street, Vancouver V6H 3V4, Canada
€Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver V6H 3V4, Canada

ARTICLE INFO ABSTRACT

Article history:

Received 6 March 2014

Received in revised form 27 June 2014
Accepted 30 June 2014

Available online 12 July 2014

Objective: Children with epilepsy often have reorganization of language networks and abnormal brain anatomy,
making determination of language lateralization difficult. We characterized the proportion and distribution of
language task activation in the cerebellum to determine the relationship to cerebral language lateralization.

Methods: Forty-six pediatric epilepsy surgery candidates (aged 7-19 years) completed an fMRI auditory semantic
decision language task. Distribution of activated voxels and language laterality indices were computed using:
(a) Broca’s and Wernicke’s areas and their right cerebral homologues; and (b) left and right cerebellar

Eﬁﬁ?gﬁsa'l MRI hemispheres. Language task activation was anatomically localized in the cerebellum.

Child Results: Lateralized language task activation in either cerebral hemisphere was highly correlated with lateralized
Aphasia language task activation in the contralateral cerebellar hemisphere (Broca vs. cerebellar: p = —0.54, p < 0.01).
Functional Connectivity Cerebellar language activation was located within Crus /11, areas previously implicated in non-motor functional
Broca’s area networks.

Wernicke’s area
Laterality index
Cerebellum

Conclusions: Cerebellar language activation occurs in homologous regions of Crus I/Il contralateral to cerebral lan-
guage activation in patients with both right and left cerebral language dominance. Cerebellar language laterality
could contribute to comprehensive pre-operative evaluation of language lateralization in pediatric epilepsy sur-
gery patients. Our data suggest that patients with atypical cerebellar language activation are at risk for having

atypical cerebral language organization.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Epilepsy, a common childhood condition, is medically refractory in
one third of patients (Kwan, and Brodie, 2000). Epilepsy surgery im-
proves seizure control and developmental outcomes in a significant
proportion of these children (Engel, 1996; Freitag, and Tuxhorn,
2005). Children with epilepsy are also more likely to have reorganiza-
tion of language networks outside of classical language areas (Broca’s
and Wernicke’s areas) in the typically dominant left hemisphere
(Gaillard, 2007; Yuan, 2006). Although clinical or neuropsychological
characteristics may provide clues to localization of language (Berl,
2014a), these features are not sufficiently reliable for prediction of lan-
guage laterality in individual patients (Anderson, 2006; Baxendale, and
Thompson, 2010). Therefore, methods to accurately localize language
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networks are an integral part of pre-operative pediatric epilepsy surgery
work-up in order to predict and minimize post-operative language
deficits (Bookheimer, 2007).

Pediatric functional MRI (fMRI) language methodology has been de-
veloped to non-invasively localize language in children (Gaillard, 2004;
Wilke, 2006; Wood et al., 2004 ). fMRI protocols can target “expressive”
(for instance, using verbal fluency (Gaillard, 2004) or letter tasks
(Wilke, 2006)), and “receptive” (for instance, using auditory or reading
comprehension tasks (Gaillard, 2004; Wilke, 2005)) aspects of lan-
guage. Here we use the semantic decision task, which has been investi-
gated in both adult and pediatric epilepsy populations (Szaflarski, 2008;
You, 2009) and demonstrates good agreement with previously stan-
dard, invasive methodologies, such as intracarotid amobarbital injection
(Gaillard, 2004; Binder, 1996; Desmond, 1995). Furthermore, this task
generates consistent, strongly left cerebral hemisphere-lateralized acti-
vation that is highly specific for linguistic processing in healthy adults
(Binder, 2008). Using this task, patients have been defined as having
atypical language if one or both classical language areas demonstrate
right hemisphere-lateralized or non-lateralized activation patterns
(Gaillard, 2004; You, 2009; Fernandez, 2001; Gaillard, 2002).

2213-1582/© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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However, multiple different approaches have been developed to
classify patients’ cerebral language laterality (Wang et al., 2014;
Wilke, and Lidzba, 2007; You, 2013; Abbott, et al., 2010; Knecht,
2003), and there is little consensus as to which methods are most reli-
able for clinical decision-making in individual patients. Most
methods are particularly challenged by abnormal cerebral anatomy,
which is a relatively common finding in patients with refractory
epilepsy (Wellmer, 2009). Cerebellar activation has been given
less attention than cerebral activation in presurgical language eval-
uation (for exception see: Brazdil, 2005; You, 2011). Interestingly,
crossed cerebro-cerebellar activation has been noted during fMRI
language tasks (Jansen, 2005). If a strong correlation between cere-
bral and cerebellar language activation patterns exists in epilepsy
patients, analysis of cerebellar language laterality could provide
complementary information about cerebral organization of language
networks.

In support of potentially relevant lateralized cerebellar language ac-
tivation, the cerebellum has strong neuroanatomical connectivity with
the contralateral frontal lobe, including Broca’s area (Schmahmann,
1996). Patients with cerebellar lesions often demonstrate semantic
and syntactical processing deficits in addition to abnormal motor pat-
terns of speech (Silveri, and Misciagna, 2000). Functional neuroimaging
studies also converge upon a role for the cerebellum in various
aspects of language function (Petersen, 1988) (for review, see
Murdoch, 2010) and identify functional cerebellar topography for
performance of different tasks (Stoodley, 2012). Intrinsic functional
connectivity analyses have provided further support for the exis-
tence of segregated fronto-cerebellar circuits potentially capable of
playing a role in cognitive processes, such as language (Krienen,
and Buckner, 2009).

We hypothesized that cerebellar language activation would
reflect cerebral language laterality in epilepsy patients, possibly
representing an under-recognized indicator of language reorganiza-
tion in this population. To address this hypothesis, we examined
the relationship between cerebral and cerebellar language activation
during a semantic decision task in pediatric epilepsy surgery
patients.

2. Material and methods

2.1. Enrollment of subjects

Between 2006 and 2011, pediatric epilepsy surgery candidates were
enrolled (n = 60; aged 4-19 years) from the Pediatric Epilepsy Surgery
Program at British Columbia Children’s Hospital (BCCH, Vancouver,
Canada) into an ongoing multi-center collaborative study of pediatric
pre-surgical language fMRI methodology (You, 2011). Written, in-
formed consent was obtained from each subject and/or legal guardian
upon enrollment. The study was approved by the Research Review
Committee at BCCH, and by the Clinical Research Ethics Board at the
University of British Columbia (UBC).

Sixty patients met initial criteria for inclusion in the study. Of these,
14 subjects were excluded because: (a) subjects did not (n = 5) or
could not (n = 3) successfully perform the semantic decision task;
(b) fMRI image quality was excessively degraded by subject head mo-
tion (n = 2); (c) fMRI data acquisition was unsatisfactory due to equip-
ment malfunction (unable to hear stimuli, n = 1); (d) valid laterality
analysis could not be completed due to extensive cerebral pathology
(n = 2); or (e) an insufficient volume of cerebellum was imaged
(<50%; n = 1).

2.2. Clinical data
Clinical records were reviewed and neurological, neurophysiological

and neuroimaging data were tabulated (see Table 1). Neuropsycholog-
ical test data were also collected but not reported in detail here. Seizure

Table 1
Characteristics of pediatric epilepsy surgery candidates completing semantic decision
fMRI task.

Epilepsy surgery candidates

Number of patients 46
Males 28
Right-handed 39

Age at fMRI (years; mean + sd) 142 + 2.8

Age at seizure onset (years; mean 4+ sd) 72 + 47

Subsequent cortical resection 19

Lesion location
Right hemisphere 5
Left hemisphere 20
Bilateral 4
Nonlesional 17

Seizure focus
Right hemisphere 9
Left hemisphere 34
Bilateral 3

Lesion type
Cortical dysplasia 7
Tumor 5
Cortical dysplasia + tumor 1
Inflammatory 1
Infarct 3
Vascular malformation 2
Hippocampal sclerosis 3
Unknown 24

onset zone was established by clinical seizure semiology and EEG char-
acteristics, as verified by a pediatric epileptologist. Neuroimaging data
were reviewed by a pediatric neuroradiologist to identify and character-
ize brain lesions. Resected lesions were further characterized by histo-
pathological examination.

2.3. MRI data

Neuroimaging data were acquired at BCCH, on a 1.5 T Siemens
Avanto (Siemens Canada Ltd., Mississauga, ON, Canada) MRI system,
and at the UBC, High Field MRI Center, on a 3.0 T Philips Achieva (Philips
Medical Systems, Best, Netherlands) MRI system. Some subjects were
scanned at both sites. Each site uses a phased array 8-element receive
headcoil. For anatomical co-registration with functional MRI datasets,
high-resolution sagittal 3D T1-weighted datasets were obtained as fol-
lows: (a) for 1.5 T scans, data were collected using a FLASH sequence
with the integrated parallel acquisition technique (iPAT) (TR = 18 ms,
TE = 9.2 ms, flip angle = 30°, matrix size = 256 x 256, FOV =
256 x 256); (b) for 3.0 T scans, data were obtained using an MPRAGE se-
quence with sensitivity encoding (SENSE) (TR = 8.3 ms, TE = 3.9 s, flip
angle = 8°, matrix size = 256 x 256, FOV = 284 x 284). Functional MRI
data were acquired axially, with slices aligned parallel to each subject’s
own AC-PC plane, using BOLD echo-planar imaging sequences,
with coverage of the entire cerebrum and most or all of the cerebel-
lum (see Fig. 1): (a) for 1.5 T data (TR = 3000 ms, TE = 48 ms, flip
angle = 90°, matrix size = 64 x 64, FOV = 220 x 220,
36 x 3.5 mm slices); (b) for 3.0 T data (TR = 2000 ms, TE = 30 ms,
flip angle = 90°, matrix size = 80 x 80, FOV = 240 x 240,
36 x 3 mm slices, 1 mm gap).

Audiovisual stimuli were presented at BCCH using MRI-
compatible goggles and headphones (Resonance Technology Inc.,
CA, USA) and at UBC using a projector, projecting stimuli onto a
screen attached to the MRI bore and viewed using a rear-facing mir-
ror. Behavioral responses were recorded using a fiber-optic push
button system (Photon Control, Burnaby, BC, Canada), monitored in
the control room, and recorded by a Dell workstation running cus-
tomized Matlab (Mathworks, Natick, MA, USA) software. Behavioral
data were recorded during fMRI tasks, to monitor task performance.
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Fig. 1. Summated cerebellar coverage. Sampling of data from the most inferior voxels of the cerebellum was incomplete. The figure demonstrates cerebellar coverage summated across all
subjects after linearly registering (FLIRT, 12-dof) binarized functional image to the MNI space. Voxels sampled in >75% of subjects are depicted in yellow. Voxels sampled in <25% of

subjects are depicted in gray or blue.

Anatomical and functional MRI datasets were acquired and recon-
structed on the scanner console, and transferred to independent
workstations for all subsequent data analysis.

24. fMRI paradigm

The experimental paradigm was an auditory decision (semantic)
task previously described by Gaillard (2007). Given the wide age
range of potential subjects, the paradigm was developed with several
levels of difficulty available, varying in vocabulary, sentence structure,
and semantic content provided. Each subject was individually trained
on a grade-level appropriate version of the task prior to scanning. If
the subject was unable to successfully complete training on one version
of the task, a less difficult version was provided. This training ensured
successful subsequent task performance. The 5 minute paradigm alter-
nated between 30 s blocks of (a) an auditory semantic decision task: lis-
ten to a series of statements, e.g., “Something monkeys eat, is a banana”,
and press a button each time a statement is “true”, and (b) an auditory
tone detection task: listen for a tone embedded into a recording of re-
versed speech, and press a button each time a tone is heard. The number
of targets was balanced across the two conditions. Subjects were
instructed to maintain eye fixation on a cross, presented at the center
of the screen.

2.5. Structural data

Structural data were processed following the methodology intro-
duced by Klein et al. (2009). MNI152-1 mm brain and the MNI structur-
al atlas package, available through the FMRIB Software Library (FSL,
version 4.1.9) (Jenkinson, 2012; Smith, 2004; Woolrich, 2009), were
used as template cerebellum ROIs (Collins et al., 1995; Mazziotta,
2001). Colin27 brain and the cytoarchitectonic probabilistic atlas were
used as template Broca’s and Wernicke’s area ROIs (Holmes, 1998;
Eickhoff, 2005). This methodology delineates the anatomical bound-
aries of Broca’s and Wernicke’s areas based on a probabilistic atlas,
thereby avoiding derivation of ROIs from fMRI activation clusters
and preventing “circular analysis” (Kriegeskorte, 2009). A cutoff value
of 1/10 was used for the cytoarchitectonic templates so that each
cytoarchitectonic region was at its largest size and included the effect
of all the available post-mortem cytoarchitectonic data when masking
the fMRI activations. FSL’s Brain Extraction Tool (BET) (Smith, 2002)
and FMRIB’s Linear Image Registration Tool (FLIRT) (Jenkinson, 2002)
were used for aligning each subject to template spaces, then the

Automatic Registration Toolbox (Ardekani, 2005) was used for nonline-
ar registration of templates to aligned subject space. Population-based
cytoarchitectural variability is not constrained by macroscopic sulcal
and gyral boundaries; hence ROIs derived from the cytoarchitectonic
atlas can span across macroscopic anatomical regions defined by surface
anatomy (Rademacher, 1993), leading to overlap between the ROIs de-
fining Broca’s and Wernicke’s areas and their homologues. To resolve
this during laterality index computation, voxels simultaneously
assigned to overlapping probabilistic cytoarchitectonic areas were
equally divided between the two overlapping regions, so that no voxel
would be counted twice. This rule was only applied to a small number
of voxels, with negligible effect on results.

2.6. Functional MRI data analysis

FMRI data analysis was performed using FSL. fMRI pre-processing
was performed using FSL’s FMRI Expert Analysis Tool (FEAT) version
5.98 (Smith, 2004; Woolrich, 2009). Images underwent motion correc-
tion using MCFLIRT (Jenkinson, 2002), non-brain removal using BET,
spatial smoothing using a Gaussian kernel of FWHM 4.0 mm, grand-
mean intensity normalization of the entire 4D datasets by a single mul-
tiplicative factor, and highpass temporal filtering (Gaussian-weighted
least-squares straight line fitting, with sigma = 50.0 s). Functional
images were then registered to the high-resolution anatomical images
using FLIRT. Time-series statistical analysis was carried out using
FMRIB’s Improved Linear Model (FILM) with local autocorrelation cor-
rection, and Z (Gaussianised T/F) statistic images were thresholded
using clusters determined by Z> 2.3 and a corrected cluster significance
threshold of p = 0.05 (from the Gaussian random field theory)
(Worsley, 2001). Z-statistic images were masked with the regional
masks created previously and the number of significant voxels was
extracted.

2.7. Language laterality index (LI) computation

After extracting the number of significant voxels, laterality indices
(LIs) were independently calculated for each pair of anatomically
homologous regions (i.e., for Broca’s area, Wernicke’s area, combined
cerebral (Broca’s area + Wernicke’s area), and hemi-cerebellum),
using the following formula (Desmond, 1995):

(Voxels on the left)—(Voxels on the right)
(Voxels on the left)+(Voxels on the right).

Ll =
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We tabulated language lateralization of each of the above regions
based on the following categories: right-lateralized (LI < 0.2), left-
lateralized (LI > 0.2), non-lateralized (—0.2 < LI < 0.2) (Gaillard,
2007). Using these cutoffs, we defined atypical language as any combi-
nation of LIs that does not consist of left lateralization of Broca’s and
Wernicke’s areas paired with right lateralization of the cerebellum. Pa-
tients with atypical language were identified for further qualitative
analysis. Classification of patients for further quantitative group analysis
was based on lateralization in Broca’s area. Thus, patients were placed
into one of three groups: Broca Right, Broca Left, or Broca Non-
lateralized. Because only one subject was classified as Broca Non-
lateralized, this group could not be included in statistical group analysis.

2.8. Statistics

Group analysis was performed on cerebral and cerebellar activation
data, using Broca’s area LI as described above. Cerebral group analysis
was done using mixed effect modeling (Beckmann, Jenkinson, and
Smith, 2003). Because alignment of subject data to a common cerebral
space leads to suboptimal alignment of cerebellar data, we utilized the
spatially unbiased infratentorial template (SUIT) toolbox, version 2.5.2
(Diedrichsen, 2009; Diedrichsen, 2006) running on SPM8 (Friston,
et al.,, 2007), to bring functional statistics maps of each subject into a
common cerebellar space. Then, cerebellar group analysis consisted of

Broca Left Group

voxel-wise, one-sample t-tests of SUIT-aligned Z-statistical maps, ob-
tained previously from FEAT analysis. Given that right cerebral language
lateralization is uncommon, we expected that the Broca Right subjects
would be under-represented in group-wise analysis, with reduced sta-
tistical power compared with the larger Broca Left group. To compen-
sate for this lower statistical power and to better demonstrate
comparable activation distribution between the groups, we constructed
proportional “summary maps” (Eickhoff, 2005)” of the cerebellum, for
the two groups.

Correlations between LIs were calculated using Spearman’s rank
correlation coefficient (Broca vs. cerebellar, Wernicke vs. cerebellar,
combined cerebral vs. cerebellar). Comparison of means was accom-
plished using Student’s t-test. Data are reported as mean + standard
error or mean =+ standard deviation as appropriate.

2.9. Relationship to functional connectivity atlas

To relate data from our subjects to a general cerebro-cerebellar
connectivity network model, the 7-Network functional connectivity
atlases for the cerebellum (Buckner, 2011; Yeo, 2011) were
coregistered to the Broca Left and Broca Right group averaged left
and right cerebral and cerebellar hemispheres, using methods de-
scribed previously. Then, we overlaid our cerebral and cerebellar
language-dependent group activation statistical maps on the

[l Broca Regions

[ Wernicke Regions
D Sylvian Fissure

Fig. 2. Group average activation and ROl masks. (A) Group average activations (Z> 2.3, p = 0.01) for the Broca Left group and (B) Broca Right group displayed on FreeSurfer average subject
surface. (C) The cytoarchitectonic masks for the Broca and Wernicke areas are also overlaid on the surface. The Sylvian fissure is outlined in red.
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Distribution of subjects based on cerebral and cerebellar laterality indices (LI). Each subject has been categorized as left lateralized (left), right lateralized (right) or non-lateralized (non)
by several LIs: (1) Broca’s area, (2) Wernicke’s area, (3) combined cerebral (Broca’s + Wernicke’s areas), and (4) cerebellum. Crossed-cerebrocerebellar lateralization of language is

evident.
Broca’s area Wernicke’s area Combined cerebral
Left Non Right Left Non Right Left Non Right Total
L1>0.2 -0.2<Ll, LI<-0.2 L1>0.2 -0.2<Ll, LI<-0.2 L1>0.2 -0.2<LI, LI<-0.2
LI<0.2 LI<0.2 LI<0.2
Right 35 0 0 33 2 0 35 0 0 35
Li<-0.2
Non 1 0 3 2 1 1 1 1 2 4
g
= -0.2<LI,
[
K=}
[
3 LI<0.2
Left 1 1 5 2 1 4 2 1 4 7
L1>0.2
Total 37 1 8 37 4 5 38 2 6 46

coregistered 7-Network atlas. This assigned each activation voxel to
a membership in one of the seven networks.

3. Results
3.1. Subject demographics and clinical characteristics

Results are reported on 46 subjects, aged 7-19 years (Table 1). Aver-
age language function as assessed by scaled scores obtained on the
Vocabulary, Similarities, and Comprehension subtests of the WISC or
WAIS was 8.3 + 2.9 (data available for 37/46 patients). Within our co-
hort, the majority of patients’ zone of ictal onset and location of cerebral
lesions (when present) were localized to the left cerebral hemisphere. A
wide variety of cerebral lesions were identified, but cerebral lesion pa-
thology was unverifiable in cases where neuroimaging findings were
nonspecific and surgery was not performed. Neuroimaging did not re-
veal any congenital or acquired abnormalities of the cerebellum. Corti-
cal resection, when performed, occurred after fMRI scanning.

3.2. Cerebral and cerebellar language task activation and laterality

Task-correlated cerebral activation was demonstrated in patterns
expected for the semantic decision task (Binder, 2008) (Fig. 2). Three
cerebral LIs were calculated based on: (1) Broca’s area + right cerebral
homologue; (2) Wernicke’s area + right cerebral homologue; and
(3) combined Broca’s and Wernicke’s areas + right cerebral homo-
logues (Table 2). One cerebellar LI was calculated based on right and
left cerebellar hemispheres.

The combined cerebral LI was highly correlated with both Broca’s
area LI (p = 0.94) and Wernicke’s area LI (p = 0.72), but did not accu-
rately reflect patients with dissociated language laterality (i.e., contra-
lateral language dominance in Wernicke’s area relative to Broca’s
area). In addition, neuroanatomical connectivity between classical lan-
guage areas and the cerebellum is more firmly established for Broca’s

area, and activation in Broca’s area homologue is the least variable com-
ponent of language activation in subjects with right hemisphere-
dominant language (You, 2011). For this reason, we used the language
lateralization in Broca’s area to divide our patients into three groups:
(1) Broca Left (n = 37), (2) Broca Right (n = 8), and (3) Broca Non-
lateralized (n = 1).

In our pediatric epilepsy subjects, we found that lateralized language
task activation in either cerebral hemisphere was highly correlated with
lateralized language task activation in the contralateral cerebellar hemi-
sphere. This relationship was readily apparent in single subject datasets
and in pooled group analysis, regardless of cerebral lateralization
(Fig. 3).

3.3. Relationship of cerebral and cerebellar LIs to clinical features

The majority of patients had cerebral language network activation
that was left-lateralized, both in the inferior frontal gyrus (Broca’s
area) and in the superior temporal gyrus (Wernicke’s area), whereas
it was right-lateralized in the cerebellum. This is the typical pattern.
Subjects with language organization that differs from this pattern (i.e.,
those with an atypical pattern) are uncommon, and of special interest.
Therefore, we identified patients from each group with atypical patterns
for further qualitative analysis (Table 3).

All Broca Left subjects had right-lateralized cerebellar Lls
except for two patients. Cerebellar LIs in these patients were left-
lateralized (n = 1) or non-lateralized (n = 1). One of these patients
had bilateral seizure foci in the context of a vascular malformation,
and the other had a left sided seizure focus with a normal structural
MRL

Each Broca Right subject had a left cerebral seizure focus, and all but
one had left cerebral pathology confirmed by neuroimaging and/or his-
topathology. The type and extent of lesion were variable, however,
ranging from a relatively small area of microdysgenesis to large perina-
tal infarction. Similarly, only three patients had associated right-sided
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Fig. 3. Typical and group averaged activation of the cerebrum and cerebellum.(A) Single subject activation data from a representative Broca Left subject, overlaid on left and right cerebral
surfaces rendered in the subject’s native space (FreeSurfer); at far right, the same single subject’s cerebellar activation rendered, after alignment with the spatially unbiased infratentorial
template (SUIT) (Z> 2.3, p = 0.01). (B) Single subject activation data from a typical Broca Right subject, with cerebral and cerebellar rendering as in (A). (C) Single Broca Non-lateralized
subject data, with cerebral and cerebellar rendering as in (A). (D) Group averaged activation data from all Broca Left subjects overlaid on FreeSurfer average subject surfaces, with cere-
bellar data rendered on SUIT. (E) Group averaged activation data from all Broca Right subjects. For group cerebellum activations, the Broca Left group is shown with 3 levels of threshold:
p = 0.01, p = 0.001, and p = 0.00001. For the Broca Right group, activation is shown only at threshold p = 0.01.

Table 3
Detailed clinical characteristics of patients with atypical language lateralization®.
Patient  Broca Wernicke Cerebellar Handedness Age at fMRI Seizure onset Seizure focus Lesion location Lesion type Language
number laterality laterality laterality L = left (years) (years) (scaled scores)®
index index index R = right
Broca Right patients
6 -0.36 0.05 0.03 R 14 0.25 Left parietal  Left parietal occipital Cortical dysplasia 6
8 -1.00 -1.00 0.82 R 12 8 Left parietal  Normal Unknown Unknown
13 -0.48 -1.00 -0.01 R 15 0.003 Left parietal  Left frontal parietal;  Perinatal stroke Unknown
right frontal
25 -0.90 -1.00 1.00 L 10 8 Left frontal Left frontal temporal Perinatal stroke 7
37 -1.00 0.26 n/a“ R 12 7 Left frontal Normal Cortical dysplasia 10
38 -0.28 -0.74 0.27 L 16 1 Left frontal Left frontal parietal ~ Pachygyria, polymicrogyria 5
occipital
49 -0.50 1.00 1.00 R 16 7 Left temporal Left temporal Tumor 9
60 -0.25 -0.98 0.60 R 11 3 Left temporal Left temporal Polymicrogyria 4
Additional atypical patients
5 0.25 0.16 -0.48 R 14 7 Left temporal Left temporal Unknown 8
40 -0.10 0.17 0.42 R 10 0.003 Left temporal Left temporal Tumor + cortical dysplasia 7
43 0.84 0.13 -0.38 R 10 9 Left temporal Left & right temporal Cortical dysplasia Unknown
51 0.22 0.89 0.98 R 14 7 Left frontal Normal Unknown 9
55 0.46 0.21 0.19 R 16 15 Left & right Left frontal Vascular malformation 10
temporal

@ Atypical language defined as any patient who does not have left lateralization of Broca’s and Wernicke’s areas paired with right lateralization of the cerebellum.

b Language function of patients with right or mixed cerebral language dominance was assessed using an average of the scaled scores obtained on the Vocabulary, Similarities, and
Comprehension subtests of the Weschler Intelligence Scale for Children (WISC) or Weschler Adult Intelligence Scale (WAIS) depending on age of the child being tested.
€ Not applicable (n/a) as patient did not have above-threshold cerebellar language task activation.
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Fig. 4. Individual cerebellar activation of the Broca Right subjects. Functional Z-statistics map (Z > 2.3) of the Broca Right subjects. Coronal sections of y = -72, -76, -80, -84 in MNI

standard space shown.

incoordination or hemiparesis. Among these subjects, cerebellar activa-
tion was either left-lateralized (n = 5), non-lateralized (n = 2), or sub-
threshold (n = 1), but was never right-lateralized (n = 0); see Fig. 4 for
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Broca Right subjects’ individual cerebellar activation data. The only pa-
tient with subthreshold cerebellar activation exhibited crossed cerebral
language laterality (right-lateralized in Broca’s area and left-lateralized
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Fig. 5. Relationship of cerebral and cerebellar laterality indices.(A) Plot of Broca’s area laterality indices (LIs) vs. cerebellar LIs for all subjects. Left lateralization is represented by positive LIs
and right lateralization by negative Lls. The contralateral relationship between Broca’s area and cerebellar LIs can be seen. (B) Plot of Wernicke’s area LIs vs. cerebellar Lls for all subjects.
(C) Percentage of cerebellar-activated voxels to whole brain activated voxel counts in patients with left and right lateralized language in Broca’s area. (D) Percentage of cerebellar-activated
voxel to whole brain activated voxel counts in patients with left and right lateralized language in Wernicke’s area.
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in Wernicke’s area) and a left frontal seizure focus despite normal struc-
tural neuroimaging (patient 37).

The single Broca Non-lateralized patient had left-lateralized cerebel-
lar activation (patient 40). This patient had neonatal seizure onset asso-
ciated with left temporal lobe pathology (mixed tumor and cortical
dysplasia).

3.4. Cerebellar language task activation and laterality

Next, we quantified the relationship between cerebral and cerebellar
language laterality in our patient cohort. There was a negative linear
correlation between LIs derived from Broca’s and Wernicke’s areas,
and those from the cerebellar hemispheres in our patient cohort
(Fig. 5A: Broca vs. cerebellar, p = —0.54, p < 0.01 (two-tailed);
Fig. 5B: Wernicke vs. cerebellar, p = —0.45, p < 0.01 (two-tailed)).
This relationship was evident throughout a wide range of cerebral Lls.
The combined cerebral LI similarly demonstrated a negative correlation
with cerebellar LIs (p = —0.58).

To determine the contribution of cerebellar language-task activa-
tion to overall brain activation during semantic decision task, we cal-
culated the proportion of significantly active voxels in the whole
brain that were located in the cerebellum. Activation located in the
cerebellum represented 12 £ 1% (mean 4 standard error) of total
brain language-task activation in our patient cohort. This percentage
was similar in patients with left compared to right cerebral laterali-
zation based on Broca’s area LI (Fig. 5C) or Wernicke’s area LI
(Fig. 5D).

A

Lobule VI

Crus |

HF —
Crus Il

Lobule VIib

3.5. Localization of cerebellar activation

To investigate the cerebellar language task activation in more detail,
we examined localization of cerebellar activation in our groups defined
by Broca’s area LI. Group analysis of Broca Left subjects (n = 37) dem-
onstrated activation in the right cerebellar hemisphere, predominantly
localized above and below the horizontal fissure, in Crus I and Crus II
of Lobule VII (Fig. 6 lower panel, column A; cluster centroid at SUIT
Atlas coordinates 22, -76, -35). In contrast, group analysis of Broca
Right subjects with above-threshold cerebellar activation (n = 7) dem-
onstrated homologous activation in left cerebellar Crus I and II, though
with smaller cluster size and less activation (Fig. 6 lower panel, column
B; cluster centroid SUIT atlas coordinates -7, -81, -33).

Proportional summary maps of cerebellar activation for Broca Left
subjects (Fig. 6 upper panel, column A) and Broca Right subjects
(Fig. 6 upper panel, column B) exemplify that despite the smaller num-
ber of Broca Right subjects represented in the cohort, activation occurs
in strikingly homologous left cerebellar regions.

3.6. Relationship to functional connectivity data

To shed light on the possible functional implications of the observed
localized cerebellar language activation, we related data from our sub-
jects to a general cerebro-cerebellar connectivity network model (You,
2011; Buckner, 2011). Among Broca Left subjects, the default network
and the frontoparietal network accounted for 40.5% and 15.7% of left ce-
rebral activation, and for 58.2% and 30.9% of right cerebellar activation,
respectively. Among Broca Right subjects, the default network and the

-80

R

B

Fig. 6. Localization of language task activation in the cerebellum. Cerebellar activation data from Broca Left (column A) and Broca Right (column B) subjects are displayed using the spatially
unbiased infratentorial template (SUIT) in MNI standard space, with SUIT anatomical parcellation overlaid (horizontal fissure is denoted HF). Coronal slices aty = —76,and y = —80 are
shown. Data were generated by two methods. The upper panel displays functional activation summary maps, thresholded to show only those voxels that are commonly activated by at
least 2 of 7 subjects for the Broca Right group, and by a similar fraction (27%, i.e., at least 10/37) of the Broca Left group. The lower panel displays the 2nd level group analysis data, using
one-sample t-tests in SPM8 (p = 0.01, uncorrected). Regardless of the method of analysis, lateralized cerebellar activation (contralateral to cerebral activation) is evident in Crus [ & Crus II.
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frontoparietal network accounted for 31.1% and 42.8% of right cerebral
activation, and for 31.2% and 31.1% of left cerebellar activation, respec-
tively. For both groups, much smaller proportions were assigned to
the other five networks in each of the cerebral and cerebellar
hemispheres.

4. Discussion

We established that significant language task activation occurs in the
cerebellum in pediatric epilepsy surgery patients engaged in a semantic
decision task. This activation is consistently located in Crus I/II of the
cerebellar hemisphere contralateral to cerebral language activation, in
subjects with left or right lateralized cerebral language.

Our data provide support for the hypothesis that cerebellar activa-
tion during a language task importantly reflects cerebral language
laterality, and that crossed cerebro-cerebellar language activation may
be a key conserved feature of language networks despite reorganization
due to cerebral lesions and/or epilepsy.

Above-threshold cerebellar activation during language tasks has not
been consistently demonstrated across all language tasks in children.
One study, using verb generation and orthographic lexical retrieval
tasks, found that 100% of normal adult subjects exhibited language
task-dependent cerebellar activation, compared with only 67% of nor-
mal children (Wood, 2004). In contrast, our results show that all pa-
tients except one (45/46; 98%) had above-threshold cerebellar
activation during the semantic decision task. Moreover, cerebellar acti-
vation represents on average 12% of whole brain language-activated
voxels in our patients, with the majority of patients ranging between
5 and 15%. There was no significant difference in the proportion of cer-
ebellar activation between patients with left or right lateralized cerebral
language. Language task cerebellar activation therefore appears to be a
conserved and substantial finding in our population. It is unclear wheth-
er the higher rate of cerebellar activation in our single subject pediatric
data is due to enhanced cerebellar network participation in semantic
tasks in this age group, differences in level of general task difficulty, or
both. In support of the importance of semantic processing in recruiting
cerebellar networks, studies in normal adults show that cerebellar acti-
vation increases in response to progressively more difficult semantic
tasks (Xiang, 2003). Cerebellar activation during semantic decision
tasks has also been noted, though not quantified, in epilepsy surgery
candidates (Binder, 1996) and children (Wilke, 2006).

Current evidence suggests that language processing is lateralized in
the cerebellum (Marien, 2001; Stoodley, Valera, and Schmahmann,
2010). In healthy right-handed subjects, cerebellar language task activa-
tion occurs in the right cerebellar hemisphere (Frings, 2006). Note has
been made of right cerebellar activation in adult and pediatric epilepsy
surgery patients with left cerebral activation during semantic language
tasks (You, 2011; Szaflarski, 2002). Here, we extend this finding by
showing a highly significant linear correlation between Broca’s area
and contralateral cerebellar activation across a wide range of cerebral
Lls in pediatric epilepsy patients. In normally developing children,
stronger language task activation in the right cerebellum is correlated
with better language skills (Berl, 2014b), implying possible functional
ramifications of cerebellar language lateralization. Furthermore, we
found that the lateralized activation generated by semantic decision
task in our pediatric patients predominantly engaged regions that dem-
onstrate functional connectivity in the resting state. Similar results were
found in the left cerebral and right cerebellar hemispheres of normal
adult subjects (Wang, Buckner, and Liu, 2013). Taken together, these re-
sults suggest that co-activation of the cerebral and contralateral cerebel-
lar regions associated with common networks may represent a key
component of language task engagement.

Crossed cerebro-cerebellar language activation in subjects with right
lateralized cerebral language has been observed, but the fidelity of this
relationship has not been fully established due to small numbers of sub-
jects. For instance, contralateral right cerebral-left cerebellar language

lateralization has been demonstrated in small numbers of normal adults
(7 subjects in Jansen, 2005; 1 subject in Hubrich-Ungureanu, 2002; 1
subject in Chee, 1999 and in patients with congenital left cerebral hemi-
sphere lesions (5 subjects; (Lidzba, 2008)). Left handedness, right
cerebral and left cerebellar language lateralization has also been dem-
onstrated in a monozygotic twin with equivalent language function to
her right handed, left cerebral and right cerebellar language lateralized
sibling (Lux, 2008). Our data extend these observations by showing
that pediatric epilepsy patients with right lateralized cerebral language
display linearly correlated left cerebellar activation. The majority of
these patients did not have large congenital left cerebral hemisphere
lesions, right hemiparesis, or left-handedness, suggesting that left cere-
bellar language dominance is not necessarily a consequence of exten-
sive left cerebral pathology.

A small subset of our cohort demonstrated non-lateralized or
subthreshold cerebellar language activation. This finding was associated
with bilateral cortical pathology, bilateral electrographic seizure
onset, dissociated cerebral language (right-lateralized in Broca’s
area, and left-lateralized in Wernicke’s area), and neonatal seizure
onset. Although the number of patients in this subset is small, there is
a suggestion that non-lateralized or subthreshold cerebellar language
activation is indicative of bilateral cerebral pathologic processes
that may induce substantial inter- and intra-hemispheric language
reorganization.

We found that cerebellar language activation in patients with left ce-
rebral language dominance was located primarily in right Crus I/II, in
keeping with previously identified functional topography of the cere-
bellum (Stoodley, and Schmahmann, 2009). Although statistically un-
derpowered, our analysis of patients with right cerebral language
dominance demonstrated cerebellar activation in an approximately ho-
mologous region of left Crus I/I. Healthy adults with right cerebral lan-
guage dominance demonstrated similarly localized left cerebellar
language activation (Jansen, 2005). Taken together, these data imply
that homologous regions of the cerebellum support language function,
akin to right cerebral hemisphere language area homologues.

This functional relationship of contralateral cerebellum to the cere-
bral cortex was more evident in Broca’s area than Wernicke’s area (or
homologues) in our patients. Correspondingly, neuroanatomical studies
demonstrate a closed loop network between frontal non-motor areas
(including Broca’s area) and lateral cerebellar regions, providing a neu-
roanatomical substrate for these interactions (Buckner, 2011; Leiner
et al., 1986; Strick, Dum, and Fiez, 2009). This crossed cerebro-
cerebellar connectivity appears to be a key component of language net-
work organization, as demonstrated by response to various brain in-
sults. Right cerebellar hemisphere damage in previously normal adults
can generate a variety of language deficits, some of which are associated
with frontoparietal SPECT hypoperfusion in the absence of any other ob-
servable cortical pathology (Marien, 2001; Marién, 1996; Fiez, 1992).
Right cerebral and left cerebellar language task activation also increases
during recovery after left hemisphere stroke in patients with previous
left cerebral hemisphere language dominance (Connor, 2006). Our
data similarly demonstrate that crossed cerebro-cerebellar language ac-
tivation was maintained in across our patient population despite refrac-
tory seizure activity that might disrupt normal network development.
These findings are in keeping with the significant evidence for the role
of the cerebellum in non-motor aspects of language (Murdoch, 2010).

One limitation of our dataset was that not all our patients had
complete imaging coverage of the inferior cerebellum (see Fig. 1
for cerebellar coverage). However, our results should provide valid
lateralization of cerebellar language activation, which involves the
upper and middle cerebellum in normal subjects (Stoodley, and
Schmahmann, 2009). The lower cerebellum is also involved in
some aspects of language processing (for instance, verbal interfer-
ence in multilingual subjects (Filippi, et al. 2011), and we acknowl-
edge that it would be optimal to include the entire cerebellum in
every subject.
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5. Conclusions

The goal of language fMRI in epilepsy surgery planning is to not only
lateralize, but also localize language with the aim of minimizing post-
operative language deficits. Cerebellar language laterality can be reli-
ably established in pediatric epilepsy patients, and is linearly correlated
with cerebral language laterality in subjects with left and right cerebral
language dominance. The contribution of pre-operative cerebellar lan-
guage laterality to surgical decision-making and language outcomes ap-
pears to warrant further investigation. We suggest that patients with
cerebellar language activation that is (1) ipsilateral to cerebral language
activation, (2) non-lateralized, or (3) subthreshold, should be flagged
for careful review prior to surgery as they appear to be at higher risk
of demonstrating atypical cerebral language organization.

Contributors

Dr. Sare Akdag (Pediatric Neuropsychologist, Department of Pediat-
rics, University of British Columbia) - assistance with neuropsycho-
logical data.

Dr. Randy L. Buckner (Athinoula A. Martinos Center for Biomedical
Imaging, Harvard University) - provision of functional connectivity
atlases

Dr. Mary Connolly (Pediatric Epileptologist Division of Neurology,
University of British Columbia) - verification of patient seizure char-
acteristics and electrophysiologic data.

Dr. William D. Gaillard (Children’s National Medical Center, Wash-
ington, DC) - provision of stimuli used for fMRI language task.

Mr. Boris Kuzeljevic (Clinical Research Support Unit Consultant, Stat-
istician/ Methodologist/ Database Developer for Child and Family
Research Institute (CFRI)) - consultation on statistical methodology.
Dr. Kenneth Poskitt (Pediatric Neuroradiologist, Division of Neurolo-
gy, University of British Columbia) - review of structural cerebellum
neuroimaging data.

References

Abbott, D.F, et al., 2010. fMRI assessment of language lateralization: an objective ap-
proach. Neurolmage 50 (4), 1446-1455. http://dx.doi.org/10.1016/j.neuroimage.
2010.01.05920097290.

Anderson, D.P,, et al., 2006. FMRI lateralization of expressive language in children with ce-
rebral lesions. Epilepsia 47 (6), 998-1008. http://dx.doi.org/10.1111/j.1528-1167.
2006.00572.x16822246.

Ardekani, B.A,, et al., 2005. Quantitative comparison of algorithms for inter-subject regis-
tration of 3D volumetric brain MRI scans. Journal of Neuroscience Methods 142 (1),
67-76. http://dx.doi.org/10.1016/j.jneumeth.2004.07.01415652618.

Baxendale, S., Thompson, P., 2010. Beyond localization: the role of traditional neuropsy-
chological tests in an age of imaging. Epilepsia 51 (11), 2225-2230. http://dx.doi.
org/10.1111/j.1528-1167.2010.02710.x21175602.

Beckmann, CF,, Jenkinson, M., Smith, S.M., 2003. General multilevel linear modeling for
group analysis in FMRI. Neurolmage 20 (2), 1052-1063. http://dx.doi.org/10.1016/
$1053-8119(03)00435-X14568475.

Berl, M.M,, et al., 2014a. Characterization of atypical language activation patterns in focal
epilepsy. Annals of Neurology 75 (1), 33-42. http://dx.doi.org/10.1002/ana.
2401524038442.

Berl, M.M,, et al., 2014b. Regional differences in the developmental trajectory of
lateralization of the language network. Human Brain Mapping 35 (1), 270-284.
http://dx.doi.org/10.1002/hbm.2217923033058.

Binder, J.R,, et al., 2008. A comparison of five fMRI protocols for mapping speech compre-
hension systems. Epilepsia 49 (12), 1980-1997. http://dx.doi.org/10.1111/j.1528-
1167.2008.01683.x18513352.

Binder, J.R., et al., 1996. Determination of language dominance using functional MRI: a
comparison with the Wada test. Neurology 46 (4), 978-984. http://dx.doi.org/10.
1212/WNL.46.4.9788780076.

Bookheimer, S., 2007. Pre-surgical language mapping with functional magnetic resonance
imaging. Neuropsychology Review 17 (2), 145-155. http://dx.doi.org/10.1007/
511065-007-9026-x17484055.

Brazdil, M., et al., 2005. Reorganization of language-related neuronal networks in patients
with left temporal lobe epilepsy — an fMRI study. European Journal of Neurology: the
Official Journal of the European Federation of Neurological Societies 12 (4), 268-275.
http://dx.doi.org/10.1111/j.1468-1331.2004.01127.x15804243.

Buckner, R.L, et al, 2011. The organization of the human cerebellum estimated by
intrinsic functional connectivity. Journal of Neurophysiology 106 (5), 2322-2345.
http://dx.doi.org/10.1152/jn.00339.201121795627.

Chee, M\W.L,, et al., 1999. Auditory and visual word processing studied with fMRIL. Human
Brain Mapping 7 (1), 15-289882087.

Collins, D.L.,, Holmes, CJ., Peters, T.M., Evans, A.C., 1995. Automatic 3-D model-based neu-
roanatomical segmentation. Human Brain Mapping 3 (3), 190-208. http://dx.doi.org/
10.1002/hbm.460030304.

Connor, LT., et al., 2006. Cerebellar activity switches hemispheres with cerebral
recovery in aphasia. Neuropsychologia 44 (2), 171-177. http://dx.doi.org/10.1016/j.
neuropsychologia.2005.05.01916019040.

Desmond, J.E., et al,, 1995. Functional MRI measurement of language lateralization in
Wada-tested patients. Brain: A Journal of Neurology 118 (6), 1411-14198595473.

Diedrichsen, J., et al., 2009. A probabilistic MR atlas of the human cerebellum. Neuroimage
46 (1), 39-46. http://dx.doi.org/10.1016/j.neuroimage.2009.01.04519457380.

Diedrichsen, J.r., 2006. A spatially unbiased atlas template of the human cerebellum.
Neurolmage 33 (1), 127-138. http://dx.doi.org/10.1016/j.neuroimage.2006.05.
05616904911.

Eickhoff, S.B., et al., 2005. A new SPM toolbox for combining probabilistic cytoarchitectonic
maps and functional imaging data. Neurolmage 25 (4), 1325-1335. http://dx.doi.org/
10.1016/j.neuroimage.2004.12.03415850749.

Engel Jr., J., 1996. Surgery for seizures. New England Journal of Medicine 334 (10),
647-652. http://dx.doi.org/10.1056/NEJM1996030733410088592530.

Fernidndez, G., et al., 2001. Language mapping in less than 15 minutes: real-time
functional MRI during routine clinical investigation. Neurolmage 14 (3), 585-594.
http://dx.doi.org/10.1006/nimg.2001.085411506532.

Fiez, J.A., et al.,, 1992. Impaired non-motor learning and error detection associated with
cerebellar damage. A single case study. Brain: A Journal of Neurology 115 (1),
155-1781559151.

Filippi, R, et al,, 2011. The right posterior paravermis and the control of language interfer-
ence. Journal of Neuroscience: the Official Journal of the Society for Neuroscience 31
(29), 10732-10740. http://dx.doi.org/10.1523/JNEUROSCI.1783-11.201121775616.

Freitag, H., Tuxhorn, 1., 2005. Cognitive function in preschool children after epilepsy sur-
gery: rationale for early intervention. Epilepsia 46 (4), 561-567. http://dx.doi.org/
10.1111/j.0013-9580.2005.03504.x15816951.

Frings, M, et al., 2006. Cerebellar involvement in verb generation: an fMRI study. Neuroscience
Letters 409 (1), 19-23. http://dx.doi.org/10.1016/j.neulet.2006.08.05817046160.

Friston, KJ., et al., 2007. Statistical Parametric Mapping: the Analysis of Functional Brain
ImagesAcademic Press.

Gaillard, W.D,, et al., 2007. Atypical language in lesional and nonlesional complex
partial epilepsy. Neurology 69 (18), 1761-1771. http://dx.doi.org/10.1212/01.wnl.
0000289650.48830.1a17967992.

Gaillard, W.D., et al., 2004. fMRI language task panel improves determination of language
dominance. Neurology 63 (8), 1403-1408. http://dx.doi.org/10.1212/01.WNL.
0000141852.65175.A715505156.

Gaillard, W.D,, et al., 2002. Language dominance in partial epilepsy patients identified
with an fMRI reading task. Neurology 59 (2), 256-26512136067.

Holmes, CJ,, et al., 1998. Enhancement of MR images using registration for signal averag-
ing. Journal of Computer Assisted Tomography 22 (2), 324-3339530404.

Hubrich-Ungureanu, P,, et al., 2002. Lateralized organization of the cerebellum in a silent
verbal fluency task: a functional magnetic resonance imaging study in healthy volun-
teers. Neuroscience Letters 319 (2), 91-9411825678.

Jansen, A, et al., 2005. Crossed cerebro-cerebellar language dominance. Human Brain
Mapping 24 (3), 165-172. http://dx.doi.org/10.1002/hbm.2007715486988.

Jenkinson, M., et al., 2012. FSL. Neuroimage 62 (2), 782-790. http://dx.doi.org/10.1016/].
neuroimage.2011.09.01521979382.

Jenkinson, M., et al., 2002. Improved optimization for the robust and accurate
linear registration and motion correction of brain images. Neurolmage 17 (2),
825-84112377157.

Klein, A., et al., 2009. Evaluation of 14 nonlinear deformation algorithms applied to
human brain MRI registration. Neuroimage 46 (3), 786-802. http://dx.doi.org/10.
1016/j.neuroimage.2008.12.03719195496.

Knecht, S., et al,, 2003. How atypical is atypical language dominance? Neurolmage 18 (4),
917-92712725767.

Kriegeskorte, N., et al., 2009. Circular analysis in systems neuroscience: the dangers of
double dipping. Nature Neuroscience 12 (5), 535-540. http://dx.doi.org/10.1038/
nn.230319396166.

Krienen, F.M., Buckner, R.L., 2009. Segregated fronto-cerebellar circuits revealed by intrin-
sic functional connectivity. Cerebral Cortex (New York, N.Y.: 1991) 19 (10),
2485-2497. http://dx.doi.org/10.1093/cercor/bhp13519592571.

Kwan, P., Brodie, M.J., 2000. Early identification of refractory epilepsy. New
England Journal of Medicine 342 (5), 314-319. http://dx.doi.org/10.1056/
NEJM20000203342050310660394.

Leiner, H.C,, Leiner, AL, Dow, R.S., 1986. Does the cerebellum contribute to mental skills?
Behavioral Neuroscience 100 (4), 443-4543741598.

Lidzba, K., et al., 2008. Reorganization of the cerebro-cerebellar network of language
production in patients with congenital left-hemispheric brain lesions. Brain
and Language 106 (3), 204-210. http://dx.doi.org/10.1016/j.bandl.2007.11.
00318158178.

Lux, S., et al., 2008. Crossed cerebral lateralization for verbal and visuo-spatial function in
a pair of handedness discordant monozygotic twins: MRI and fMRI brain imaging.
Journal of Anatomy 212 (3), 235-248. http://dx.doi.org/10.1111/j.1469-7580.2008.
00855.x18304205.

Marién, P., et al.,, 1996. Cerebellar induced aphasia: case report of cerebellar induced pre-
frontal aphasic language phenomena supported by SPECT findings. Journal of the
Neurological Sciences 144 (1-2), 34-438994102.


http://dx.doi.org/10.1016/j.neuroimage.2010.01.059
http://www.ncbi.nlm.nih.gov/pubmed/20097290
http://dx.doi.org/10.1111/j.1528-1167.2006.00572.x
http://www.ncbi.nlm.nih.gov/pubmed/16822246
http://www.ncbi.nlm.nih.gov/pubmed/15652618
http://www.ncbi.nlm.nih.gov/pubmed/21175602
http://dx.doi.org/10.1016/S1053-8119(03)00435-X
http://www.ncbi.nlm.nih.gov/pubmed/14568475
http://dx.doi.org/10.1002/ana.24015
http://www.ncbi.nlm.nih.gov/pubmed/24038442
http://www.ncbi.nlm.nih.gov/pubmed/23033058
http://dx.doi.org/10.1111/j.1528-1167.2008.01683.x
http://www.ncbi.nlm.nih.gov/pubmed/18513352
http://dx.doi.org/10.1212/WNL.46.4.978
http://www.ncbi.nlm.nih.gov/pubmed/8780076
http://dx.doi.org/10.1007/s11065-007-9026-x
http://www.ncbi.nlm.nih.gov/pubmed/17484055
http://www.ncbi.nlm.nih.gov/pubmed/15804243
http://www.ncbi.nlm.nih.gov/pubmed/21795627
http://www.ncbi.nlm.nih.gov/pubmed/9882087
http://dx.doi.org/10.1002/hbm.460030304
http://dx.doi.org/10.1016/j.neuropsychologia.2005.05.019
http://www.ncbi.nlm.nih.gov/pubmed/16019040
http://www.ncbi.nlm.nih.gov/pubmed/8595473
http://www.ncbi.nlm.nih.gov/pubmed/19457380
http://dx.doi.org/10.1016/j.neuroimage.2006.05.056
http://www.ncbi.nlm.nih.gov/pubmed/16904911
http://www.ncbi.nlm.nih.gov/pubmed/15850749
http://www.ncbi.nlm.nih.gov/pubmed/8592530
http://www.ncbi.nlm.nih.gov/pubmed/11506532
http://www.ncbi.nlm.nih.gov/pubmed/1559151
http://www.ncbi.nlm.nih.gov/pubmed/21775616
http://www.ncbi.nlm.nih.gov/pubmed/15816951
http://www.ncbi.nlm.nih.gov/pubmed/17046160
http://refhub.elsevier.com/S2213-1582(14)00094-1/bb26
http://refhub.elsevier.com/S2213-1582(14)00094-1/bb26
http://dx.doi.org/10.1212/01.wnl.0000289650.48830.1a
http://www.ncbi.nlm.nih.gov/pubmed/17967992
http://dx.doi.org/10.1212/01.WNL.0000141852.65175.A7
http://www.ncbi.nlm.nih.gov/pubmed/15505156
http://www.ncbi.nlm.nih.gov/pubmed/12136067
http://www.ncbi.nlm.nih.gov/pubmed/9530404
http://www.ncbi.nlm.nih.gov/pubmed/11825678
http://www.ncbi.nlm.nih.gov/pubmed/15486988
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
http://www.ncbi.nlm.nih.gov/pubmed/21979382
http://www.ncbi.nlm.nih.gov/pubmed/12377157
http://dx.doi.org/10.1016/j.neuroimage.2008.12.037
http://www.ncbi.nlm.nih.gov/pubmed/19195496
http://www.ncbi.nlm.nih.gov/pubmed/12725767
http://dx.doi.org/10.1038/nn.2303
http://www.ncbi.nlm.nih.gov/pubmed/19396166
http://www.ncbi.nlm.nih.gov/pubmed/19592571
http://dx.doi.org/10.1056/NEJM200002033420503
http://www.ncbi.nlm.nih.gov/pubmed/10660394
http://www.ncbi.nlm.nih.gov/pubmed/3741598
http://dx.doi.org/10.1016/j.bandl.2007.11.003
http://www.ncbi.nlm.nih.gov/pubmed/18158178
http://dx.doi.org/10.1111/j.1469-7580.2008.00855.x
http://www.ncbi.nlm.nih.gov/pubmed/18304205
http://www.ncbi.nlm.nih.gov/pubmed/8994102

306 J.N. Gelinas et al. / Neurolmage: Clinical 6 (2014) 296-306

Marien, P., et al., 2001. The lateralized linguistic cerebellum: a review and a new hypoth-
esis. Brain and Language 79 (3), 580-600. http://dx.doi.org/10.1006/brln.2001.
256911781058.

Mazziotta, J., et al., 2001. A probabilistic atlas and reference system for the human brain:
International Consortium for Brain Mapping (ICBM). Philosophical Transactions of
the Royal Society of London. Series B, Biological Sciences 356 (1412), 1293-1322.
http://dx.doi.org/10.1098/rstb.2001.091511545704.

Murdoch, B.E., 2010. The cerebellum and language: historical perspective and review.
Cortex; a Journal Devoted to the Study of the Nervous System and Behavior 46 (7),
858-868. http://dx.doi.org/10.1016/j.cortex.2009.07.01819828143.

Petersen, S.E., et al., 1988. Positron emission tomographic studies of the cortical anatomy
of single-word processing. Nature 331 (6157), 585-589. http://dx.doi.org/10.1038/
331585a03277066.

Rademacher, J., et al., 1993. Topographical variation of the human primary cortices: impli-
cations for neuroimaging, brain mapping, and neurobiology. Cerebral Cortex (New
York, N.Y.: 1991) 3 (4), 313-3298400809.

Schmahmann, ].D., 1996. From movement to thought: anatomic substrates of the cerebel-
lar contribution to cognitive processing. Human Brain Mapping 4 (3), 174-198.
http://dx.doi.org/10.1002/(SICI)1097-0193(1996)4:3<174::AID-HBM3>3.0.CO; 2-
020408197.

Silveri, M.C., Misciagna, S., 2000. Language, memory, and the cerebellum. Journal of
Neurolinguistics 13 (2-3), 129-143.

Smith, S.M,, et al., 2004. Advances in functional and structural MR image analysis and im-
plementation as FSL. Neurolmage 23 (Suppl. 1), S208-S219. http://dx.doi.org/10.
1016/j.neuroimage.2004.07.05115501092.

Smith, S.M., 2002. Fast robust automated brain extraction. Human Brain Mapping 17 (3),
143-155. http://dx.doi.org/10.1002/hbm.1006212391568.

Stoodley, CJ., Schmahmann, J.D., 2009. Functional topography in the human cerebellum:
a meta-analysis of neuroimaging studies. Neuroimage 44 (2), 489-501. http://dx.doi.
org/10.1016/j.neuroimage.2008.08.03918835452.

Stoodley, C.J., 2012. The cerebellum and cognition: evidence from functional imaging
studies. Cerebellum (London, England) 11 (2), 352-365. http://dx.doi.org/10.1007/
$12311-011-0260-721373864.

Stoodley, CJ., Valera, E.M., Schmahmann, J.D., 2010. An fMRI study of intra-individual
functional topography in the human cerebellum. Behavioural Neurology 23 (1-2),
65-79. http://dx.doi.org/10.3233/BEN-2010-026820714062.

Strick, P.L., Dum, R.P., Fiez, J.A., 2009. Cerebellum and nonmotor function. Annual Review
of Neuroscience 32, 413-434. http://dx.doi.org/10.1146/annurev.neuro.31.060407.
12560619555291.

Szaflarski, ].P., et al., 2008. Comprehensive presurgical functional MRI language evaluation
in adult patients with epilepsy. Epilepsy & Behavior: E&B 12 (1), 74-83. http://dx.doi.
org/10.1016/j.yebeh.2007.07.01517964221.

Szaflarski, ].P., et al., 2002. Language lateralization in left-handed and ambidextrous peo-
ple: fMRI data. Neurology 59 (2), 238-24412136064.

Wang, D., Buckner, R.L, Liu, H., 2013. Cerebellar asymmetry and its relation to cerebral
asymmetry estimated by intrinsic functional connectivity. Journal of Neurophysiolo-
gy 109 (1), 46-57. http://dx.doi.org/10.1152/jn.00598.201223076113.

Wang, J., et al., 2014. Classification of fMRI patterns — a study of the language network
segregation in pediatric localization related epilepsy. Human Brain Mapping 35 (4),
1446-1460. http://dx.doi.org/10.1002/hbm.2226523450847.

Wellmer, J., et al,, 2009. Cerebral lesions can impair fMRI-based language lateralization.
Epilepsia 50 (10), 2213-2224. http://dx.doi.org/10.1111/j.1528-1167.2009.02102.
x19453706.

Wilke, M., et al., 2006. An fMRI task battery for assessing hemispheric language
dominance in children. Neurolmage 32 (1), 400-410. http://dx.doi.org/10.1016/j.
neuroimage.2006.03.01216651012.

Wilke, M., et al., 2005. Comprehensive language mapping in children, using functional
magnetic resonance imaging: what’s missing counts. Neuroreport 16 (9), 915-919.
http://dx.doi.org/10.1097/00001756-200506210-0000815931061.

Wilke, M., Lidzba, K., 2007. LI-tool: a new toolbox to assess lateralization in functional
MR-data. Journal of Neuroscience Methods 163 (1), 128-136. http://dx.doi.org/10.
1016/jjneumeth.2007.01.02617386945.

Wood, A.G., et al., 2004. Language cortex activation in normal children. Neurology 63 (6),
1035-1044. http://dx.doi.org/10.1212/01.WNL.0000140707.61952.CA15452295.
Woolrich, M.W,, et al., 2009. Bayesian analysis of neuroimaging data in FSL. Neuroimage 45

(Suppl. 1), S173-S186. http://dx.doi.org/10.1016/j.neuroimage.2008.10.05519059349.

Worsley, K., 2001. Statistical Analysis of Activation ImagesOxford Scholarship Online.

Xiang, H., et al., 2003. Involvement of the cerebellum in semantic discrimination: an fMRI
study. Human Brain Mapping 18 (3), 208-214. http://dx.doi.org/10.1002/hbm.
1009512599279.

Yeo, B.T.T,, et al., 2011. The organization of the human cerebral cortex estimated by
intrinsic functional connectivity. Journal of Neurophysiology 106 (3), 1125-1165.
http://dx.doi.org/10.1152/jn.00338.201121653723.

You, X,, et al., 2013. A decisional space for fMRI pattern separation using the principal
component analysis — a comparative study of language networks in pediatric
epilepsy. Human Brain Mapping 34, 2330-2342. http://dx.doi.org/10.1002/hbm.
2206922461299.

You, X, et al., 2009. fMRI activation pattern recognition: a novel application of
PCA in language network of pediatric localization related epilepsy. Conference
Proceedings: Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference
5397-5400. http://dx.doi.org/10.1109/IEMBS.2009.533281119963905.

You, X, et al., 2011. Sub-patterns of language network reorganization in pediatric locali-
zation related epilepsy: a multisite study. Human Brain Mapping 32 (5), 784-799.
http://dx.doi.org/10.1002/hbm.2106621484949.

Yuan, W., et al., 2006. fMRI shows atypical language lateralization in pediatric epilepsy pa-
tients. Epilepsia 47 (3), 593-600. http://dx.doi.org/10.1111/j.1528-1167.2006.00474.
x16529628.


http://dx.doi.org/10.1006/brln.2001.2569
http://www.ncbi.nlm.nih.gov/pubmed/11781058
http://www.ncbi.nlm.nih.gov/pubmed/11545704
http://www.ncbi.nlm.nih.gov/pubmed/19828143
http://dx.doi.org/10.1038/331585a0
http://www.ncbi.nlm.nih.gov/pubmed/3277066
http://www.ncbi.nlm.nih.gov/pubmed/8400809
http://dx.doi.org/10.1002/(SICI)1097-0193(1996)4:3<174::AID-HBM3>3.0.CO;2-0
http://dx.doi.org/10.1002/(SICI)1097-0193(1996)4:3<174::AID-HBM3>3.0.CO;2-0
http://dx.doi.org/10.1002/(SICI)1097-0193(1996)4:3<174::AID-HBM3>3.0.CO;2-0
http://www.ncbi.nlm.nih.gov/pubmed/20408197
http://refhub.elsevier.com/S2213-1582(14)00094-1/subref50
http://refhub.elsevier.com/S2213-1582(14)00094-1/subref50
http://dx.doi.org/10.1016/j.neuroimage.2004.07.051
http://www.ncbi.nlm.nih.gov/pubmed/15501092
http://www.ncbi.nlm.nih.gov/pubmed/12391568
http://www.ncbi.nlm.nih.gov/pubmed/18835452
http://dx.doi.org/10.1007/s12311-011-0260-7
http://www.ncbi.nlm.nih.gov/pubmed/21373864
http://www.ncbi.nlm.nih.gov/pubmed/20714062
http://dx.doi.org/10.1146/annurev.neuro.31.060407.125606
http://www.ncbi.nlm.nih.gov/pubmed/19555291
http://www.ncbi.nlm.nih.gov/pubmed/17964221
http://www.ncbi.nlm.nih.gov/pubmed/12136064
http://www.ncbi.nlm.nih.gov/pubmed/23076113
http://www.ncbi.nlm.nih.gov/pubmed/23450847
http://dx.doi.org/10.1111/j.1528-1167.2009.02102.x
http://www.ncbi.nlm.nih.gov/pubmed/19453706
http://dx.doi.org/10.1016/j.neuroimage.2006.03.012
http://www.ncbi.nlm.nih.gov/pubmed/16651012
http://www.ncbi.nlm.nih.gov/pubmed/15931061
http://dx.doi.org/10.1016/j.jneumeth.2007.01.026
http://www.ncbi.nlm.nih.gov/pubmed/17386945
http://www.ncbi.nlm.nih.gov/pubmed/15452295
http://www.ncbi.nlm.nih.gov/pubmed/19059349
http://refhub.elsevier.com/S2213-1582(14)00094-1/bb67
http://dx.doi.org/10.1002/hbm.10095
http://www.ncbi.nlm.nih.gov/pubmed/12599279
http://www.ncbi.nlm.nih.gov/pubmed/21653723
http://dx.doi.org/10.1002/hbm.22069
http://www.ncbi.nlm.nih.gov/pubmed/22461299
http://www.ncbi.nlm.nih.gov/pubmed/19963905
http://www.ncbi.nlm.nih.gov/pubmed/21484949
http://dx.doi.org/10.1111/j.1528-1167.2006.00474.x
http://www.ncbi.nlm.nih.gov/pubmed/16529628

	Cerebellar language mapping and cerebral language dominance in pediatric epilepsy surgery patients
	1. Introduction
	2. Material and methods
	2.1. Enrollment of subjects
	2.2. Clinical data
	2.3. MRI data
	2.4. fMRI paradigm
	2.5. Structural data
	2.6. Functional MRI data analysis
	2.7. Language laterality index (LI) computation
	2.8. Statistics
	2.9. Relationship to functional connectivity atlas

	3. Results
	3.1. Subject demographics and clinical characteristics
	3.2. Cerebral and cerebellar language task activation and laterality
	3.3. Relationship of cerebral and cerebellar LIs to clinical features
	3.4. Cerebellar language task activation and laterality
	3.5. Localization of cerebellar activation
	3.6. Relationship to functional connectivity data

	4. Discussion
	5. Conclusions
	Contributors
	References


